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Hertzian indentation of sintered alumina 
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I 

Hertzian indentation experiments have been performed on sintered e-AI203 using 
WC-Co spheres with radii in the range 0.5 to 6.5 mm. The critical load P* to cause ring 
cracking was proportional to indenter radius R which is consistent with Auerbach's law. 
Values of room temperature fracture surface energy, % and fracture toughness, Klc, were 
derived using the theories of Frank and Lawn and Warren. 

1. Introduction 
Early work on Hertzian indentation-induced 
fracture of brittle materials tended to focus on 
the empirical result known as Auerbach's Law 
[ 1 ] which states that the ratio of the critical load 
to produce a ring crack to the radius of the in- 
denter is constant. In conjunction with Hertz's 
[2] equations (to be presented later), Auerbach's 
law implies that the maximum tensile stress at 
fracture is not constant but increases as R -1/3 
where R is the indenter radius. 

Developments in Hertzian indentation theory, 
.... based on the Griffith~[3 ] energy bgiance criterion, 

have led to improved understanding of ring crack 
formation in brittle materials and this has led to a 
convenient method for the determination of 
fracture surface energy, 3', and fracture toughness, 
Ktc .  A brief account of these results is provided 
below. 

When a spherical indenter is loaded against the 
flat surface of an elastic solid, a symmetrical stress 
distribution is set up in which the principal stresses 
are compressive in a tear-drop shaped region 
beneath the indenter to a depth of the order of 
the contact diameter. Outside the contact region, 
the greatest stress component is tensile and reaches 
its maximum value on the surface of the solid on 
the circle of contact. This tensile stress decreases 
rapidly in magnitude with both distance z from 
the surface and with distance y along the surface. 
Along the surface the stress is radial and may be 
written [2, 41: 
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where P is the normal load, a is the radius of the 
circle of contact, R the radius of the indenter, 
E , E  1 and v,v  I are the Young's moduli and 
Poisson's ratios of the sample and indenter, 
respectively. The loading geometry is illustrated 
in Fig. 1. 

Ring cracks are formed at a critical load P* and 
generally it is found that the ring crack radius r is 
slightly greater than the contact radius a. Initially 
the crack is almost normal to the sample surface, 
but under increased loading it extends along a 
conical surface in a stable fashion remaining 
almost normal to the trajectory of maximum 
tensile stress. 

The basis for a fracture mechanics treatment 
of Hertzian ring cracking has been the use of an 
expression for the stress intensity factor of an 
internal crack of length 2e in an infinite plate 
subjected to a variable normal tensile stress along 
its length. 

A general expression deduced by Warren [5] 
for the critical load Pc to form a ring crack from 
pre-existing flaws of size c is: 

_ [JkR7 a [qb(c)]_ 2 

where q~(c) represents an integral of the variable 
applied stress over the crack length c, and /3 is a 
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Figure 1 Illustration of Hertzian indentation loading 
geometry. A spherical indenter of radius R produces a 
contact radius a when loaded against a plane surface 
under a normal load P. Cracks of length c generally form 
outside the contact area at a radius r. 

constant whose value is 8r?/27 assuming the 
stress intensity factor for an internal crack of 
length 2c to be applicable to the case of ring 
crack formation. 

The expression ~(c) is a sensitive function of 
Poisson's ratio v and of the location of the (ing 
crack relative to the contact radius. Curves of Pc 
against normalized crack length c/a are shown iq 
Fig. 2 for the cases r/a = 1 and r/a > 1. 

When r/a = 1, the curve of Pc against normal- 
ized crack length c/a has two minima, and Frank 
and Lawn [6] considered this case to develop 
their theory of ttertzian ring cracks which leads 
to Auerbach's Law, P*/R = const., provided the 
flaw distribution does not contain flaws larger 
than those corresponding to the maximum in the 

Pe curve. Ring crack formation was considered to 
occur at all Pe values greater than the first Pe 
minimum, but only to become observable when 
Pc increases to its local maximum, when the crack 
becomes unstable and grows to an observable 
depth c*. The yalue of Pc corresponding to the 
onset of crack growth is taken to correspond to 
the critical lo~d written P*. The corresponding 
value of flaw size, c*, should represent an upper 
limit to observed flaw dimensions. Frank and 
Lawn give the approximate result 

R k 7  
P* = 2.3 x 104x 

(! -- u z ) ( 1 -  2~) 2" 

However, ring cracks generally form for r/a > 1, 
when the Pc curve has only one minimum. In this 
case, Warren considers ring crack formation to 
occur at the value of Pe corresponding to the 
minimum, and again the details of the flaw distri- 
bution are not significant, provided sufficient 
flaws are present in the range corresponding to 
the Pc minimum. The observed critical load P* is 
now considered to correspond to the Pc minimum. 

Previous determinations of fracture surface 
energy by this technique have been made for 
ZrC, VC and WC [5], TiC [5, 7], UO2 [8], YhO2 

[91. 

2. Experimental  procedure 
Specimens were Feldmuhle SN60 cold-pressed and 
sintered c~-A1203 cutting tips containing 4 wt% 
ZrO2, of grain size 2/Jm, and dimensions 13 mm x 
13minx 7ram. The surfaces were lapped and 
polished using 2/Jm diamond paste. The indenters 
were sintered WC-Co spheres with radii in the 
range 0.5 to 6.5 ram. Loading was performed by 

, I ] 
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Figure 2 Curves of Pc against normalized crack length e/a for r/a = t and r/a > 1. 

rla =1 
rla >.1 
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Figure 3 Critical-load P* to produce ring cracks plotted 
against indenter radius R. 

means of  a Mayes 100 kN Universal Mechanical 
Testing Machine using a loading rate of  300 kgf 
rain -1 . The critical load for cracking was deter- 
mined for each indenter radius by progressively 
increasing the applied load until cracks forming 
at least 50% of  a complete circle were observed. 
Indenters were lightly smeared with grease to 
enable determination o f  the contact area. Obser- 
vations were carried out using an optical micro- 
scope and crack radius r and contact radius ag 

were determined using a micrometer eyepiece. 
Some indication of  plastic deformation was 
observed for small overloaded indenters with 
radii R < 3 mm. Indenters were examined after 
loading but were not found to be damaged. 

3. Results 
Critical load P* to produce ring cracks for in- 
denter radii R in the range 0.5 to 6.5 mm is 
shown plotted against R in Fig. 3. The observed 
linear relationship is consistent with Auerbach's 
law. Fig. 4 shows calculated contact radius a 
plotted against measured grease patch radius ag. 

The grease patch radius ag was found to be con- 
sistently greater than the contact radius a, calcu- 
lated from the Hertz theory, with ag = 1.14a. 
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Figure 4 Measured grease patch radius ag plotted against 
calculated contact radius a. 

Similar effects have been observed using the 
grease ring technique for silicate glass using 
steel indenters [10], and for UO2 [8] and ThO2 
[9] using hardened steel spheres where elastic 
mismatch is small. Recent low load ( P <  1 kg) 
measurements using an accurate Newtons rings 
technique for fused silica, soda-lime glass and 
sapphire indented with steel and WC spheres 
also showed a similar effect [11]. Soda-lime 
glass indented with steel spheres was an excep- 
tion in that measured and calculated values were 
in close agreement. It would thus appear that 
Hertzian theory in most cases underestimates 
the experimental contact radius. However, the 
reliability of  the grease ring method in providing 
a true measure of  contact radius is unknown; 
this could be investigated using the Newton's 
rings method. Measured crack radius, r, is shown 
plotted against calculated contact radius, a, in 
Fig. 5. Cracks form consistently outside the 
contact region and from the graph r/a = 1.21. 
If the grease radius ag is taken to represent the 
contact radius, then the results should be evalu- 
ated in terms of  the ratio flag = 1.06. Both 
approaches are considered. 

In the theory of  Warren, the critical load to 
form ring cracks corresponds to the minimunl of  
the crack extension function (ale)(~)-2 From the 
data of  Warren, the locus of  the minima of  (a/c) 
(~)-2 with respect to normalized crack length c/a 
was constructed as a function of  r/a for alumina, 
for which Poisson's ratio was taken as v = 0.237, 
and is shown in Fig. 6 [12]. The mechanical data 
required is collected in Table 1. Fig. 7 is an SEM 
micrograph of  the polished alumina surface. 
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Figure 5 Measured crack radius r plotted against calcu- 
lated contact radius a. 

4 .  D i s c u s s i o n  

These results enable room temperature fracture 
surface energy 3  ̀ and fracture toughness K l c  to 
be determined. The Auerbach constant P*/R = 
590 kN m -1 from the slope of  Fig. 3. 

From the theory of  Warren, 

P* (37k a 
R 1 --  p2 --(qb)-2c 

taking the value of  (ale) ({)-2  from Fig. 6, when 
r/a= 1.21 from Fig. 5 leads to a value of  3 ' =  
49 J m -2, where the value of/3 = 87r3/27 used is 
that for an internal crack of  length 2c. 

If the grease radius ag is taken as the true 
contact  radius, a consistent approach which 
remains within the analytical framework is to 
think of  ag as resulting from the observed critical 
load P* but with a larger effective indenter radius 

R '  > R. The grease radius may then be calculated 
from Hertzian theory,  ag =a(R').  The relation 

T A B L E I Mechanical data 

Material Young's modulus Poisson's 
E(10 s MN m -s) ratio, u 

AlzO 3 3.7 0.237 
WC-Co 6.0 0.25 

for the fracture surface energy is accordingly 

rewrit ten as 

4 ( 1 - - u  2) c(qb)2p,2" 
3 `  = - 3 ~Ea 3 a 

It is noted that whenever ag = a(R') > a ( R )  then 
a reduced value of  3' will be obtained. This pro- 
cedure may be thought of  as providing bounds for 
the fracture surface energy 3'. The new value of  
fracture surface energy obtained using ag = a(R'), 
and the value of  (c/a)((b) 2 for r/a = 1.06 from 
Fig. 6 is 3' = 24 J m -2 . 

From the Frank and Lawn theory:  

P* k3' 
- -  = 2 . 3  x 104 
R (1 - . 2 ) ( 1  - 2 . )  2 

and this leads to a value of  3' = 7.5 J m -2 . 
Ring crack formation requires a pre-existing 

distribution of  surface flaws with which the 
Hertzian stress field can interact. The normalized 

size of  required pre-existing flaws is of  the order 
of  c / a ~ 3 x 1 0  -2 . Since 0 . 1 m m ~ < a ~ < 0 . 4 m m  

from Fig. 4, the range of  required pre-existing 
surface flaws is 3 # m % e ~ <  12/Jm. From the 
micrograph of  Fig. 7 it is seen that flaws are 
present throughout the required range, but  that 
relatively few are to be found near the upper size 
limit. 

The Frank and Lawn theory requires pre- 
existing flaws in the range 1 x 10 -2 < (c/a) S 1 x 
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Figure 6 Locus of minima with respect to normalized 
crack length c/a of the crack extension function a/c(q~) -2 
constructed as a function ofr/a. Figure 7 SEM micrograph of polished alumina surface. 
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10 -1 , which is equivalent to 1/~m < c ~< 40/lm. In 
the samples examined flaw sizes c > 10/lm were 
infrequent. 

Fracture toughness, KIc,  is found from the 
linear fracture mechanics relation: 

1 - -  3`2 
23' - K~c. 

E 

Warren's theory leads to Klc =6 .2  MN m -a/2 
using calculated values of the contact radius, 
and K l c =  4.3 MN m -3/2 when contact is assumed 
to be given by the grease patch radius. The 
corresponding result from the Frank and Lawn 
expression is Kac = 2.5 MN m -3/2 . The KlC values 
obtained from Warren's theory fall either side of 
the manufacturer's value* given as K lc  = 5.5 MN 
m -a/2 (3' = 38 J m-2), whilst the result obtained 
from the Frank and Lawn expression is signifi- 
cantly lower. The results obtained from Warren's 
theory are in general agreement with published 
results on similar grain size materials [13, 14]. The 
recent results of Lange [14], obtained by an 
indentation technique [15] on AlzO3-ZrO2 
materials with grain size in the region of 2 #m, 
are of particular interest. Lange finds toughness 
values K1c = 5.0 MN m -3/z for pure AI20 3 and 
K l c =  5.9 MN m -3/2 for A1203-7.5 vol% ZrO2. 
His extrapolated curve gives a value Klc = 5.3 MN 
m -3/2 for A1203-3 vol% ZrO2 which is the com- 
position of the present material as a volume 
percent. 

5. Conclusion 
These results provide good confirmation of Warren's 
theory in its original form. When the grease patch 

radius is taken as the contact radius, the resulting 
toughness value falls below that for pure A1203 
of similar grain size. However, the relationship 
between the grease patch radius, the true contact 
radius and the calculated radius from Hertzian 
theory, remains to be elucidated. The toughness 
value for this material obtained from the Frank 
and Lawn expression is significantly lower. 
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